%% é 111_SUCCI.ch27.fm Page 311 Thursday, June 27,2002 8:17 AM

Chapter 27

The XP Game Explained

—Vera Peeters and Pascal Van Canwenberghe

The XP planning game, velocity, and user stovies ave hard to
explain and “sell” to developers and businesspeople. How can we
better explain these concepts? The XP specification, estimation,
and planning methods sound too weird and simple to work.
How can we prove or show that they work, without committing
ourselves to “just do it” on a real project? If the project is to suc-
ceed, we need to get developers and businesspeople working as one
team. How can we get them to talk, cooperate, and trust each
other?

The “XP Game” is a fun and playful simulation of the XP
development process. No technical knowledge or skill is
requived to participate, so we can form teams with both devel-
opers and businesspeople. The element of competition helps the
players bond with their teammates. At the end of the game,
everybody has experienced how user stovies, estimation, plan-
ning, implementation, and functional tests ave used. They
have seen how the “velocity” fuctor is used to adjust the sched-
ule. Developers and customers have gotten to know and respect
each other.

Peeters and Pascal Van Cauwenberghe, Tryx and Lesire Software Engineering. All rights
reserved.




%% é 111_SUCCI.ch27.fm Page 312 Thursday, June 27,2002 8:17 AM

Infroduction

Lesire Software Engineering had been using “developer-only Extreme
Programming” for a few months. Refactoring, unit tests, simple design,
and pair programming had resulted in measurable improvements in the
software process.

When the company wanted to transition to “full” XP and expand
the use of XP beyond the development team, it faced a number of
problems.

4 Poor communication between business and developer teams.
¢ No understanding of user stories, the planning game, and velocity.

4 Distrust of the planning game and velocity. How could such simple
methods deliver credible plans and schedules?

Presentations, discussions, training, and coaching did not com-
pletely resolve these issues. Developers and businesspeople reluctantly
agreed to try the XP experiment, without much hope of success.

Then Vera Peeters, Lesire’s XP coach, exclaimed, “Let’s play a game!”

Let’s Play!

The players are divided into small teams (four to eight players). Each
team consists of developers and customers. A coach assists each team,
to explain and guide the game and to answer questions. The team can
earn “business points” by performing simple tasks. The team with the
most business points wins.

The coach gives the team a small set of prewritten story cards. These
cards describe simple tasks, such as “Build a two-story house of cards,”
“Throw a six five times using two dice,” and “Find a missing card from
a pack of cards.”

The team members (acting as developers) estimate how long it will
take them to “implement” the tasks. The coach is available to answer
questions about the stories. The team may choose a time between ten
and 60 seconds. Or they may declare that it’s impossible to implement
the task in 60 seconds. When all the stories have been estimated, the
cards are handed back to the coach.

312 Extreme Programming Perspectives

- @



%% é 111_SUCCI.ch27.fm Page 313 Thursday, June 27,2002 8:17 AM

The team (now acting as a customer) must create a release plan:
They choose the stories to implement and the order of implementation.
Each story is worth some business points. The team tries to maximize
the number of business points they can earn. The total time to imple-
ment all selected stories may not exceed 180 seconds, the fixed itera-
tion time.

The team members (acting as developers) must now implement each
planned story in turn, in the order defined by the customer. An hour-
glass is used to measure the implementation time. When the implemen-
tation is “accepted” by the coach, the team earns the business points of
the story. When the hourglass runs out, the iteration ends. If the team
has finished all the stories before the end of the iteration, they may ask
the customer for another story.

At the end of each iteration, there is a debriefing, discussing the
problems, solutions, and strategies. The “team velocity” is explained
and calculated. For the next iteration, the team must use velocity in-
stead of time as a measure of how much work they can do.

The simulation typically runs over three iterations. It takes from one
and a half to two hours, including debriefing and discussion sessions.

Open the Mayic Bay

At the start of the game, a bag with game props is emptied on each
team’s table. The bag contains dice, playing cards, colorful paper, bal-
loons, pieces of string, folded hats and boats, story cards, planning/
scoring sheets, a pen, and an hourglass.

This jumble of colorful, childish props reassures the players that this
is not a serious event. They will not be judged; they can relax and enjoy
the game. They are open to bonding with their teammates and to ab-
sorbing something new. It’s just a game, after all.

Tell Us a Story

The story cards contain simple and small tasks such as “Find a missing
card from a deck” or “Inflate five balloons to a size of 40 cm.” No spe-
cial knowledge is required to understand how to carry out these tasks.

Chapter27 The XP Game Explained 313

%




%% é 111_SUCCI.ch27.fm Page 314 Thursday, June 27,2002 8:17 AM

And yet, the cards alone do not contain enough information to esti-
mate the complexity of the tasks. The players ask the coach (acting as
their customer) more questions about the tasks—for example: “Are we
allowed to perform the task as a team?” “What do you mean by throw a
six five times? Do we need five consecutive sixes?” The coach clarifies
the meaning of the stories and explains what conditions must be ful-
filled to accept the story.

This reinforces the idea that user stories aren’t specifications but “a
promise to talk.” It’s all right to ask the customer questions. Get as
much information as you need to make good decisions. Ask the cus-
tomer—they know! Or at least they can find out the answer.

Estimating: How Hard Can This Be?

One of the most difficult aspects of working with velocity is convincing
developers to estimate consistently. The velocity factor includes all the
variable parts of team performance: experience, knowledge of the prob-
lem domain, team size, adding and removing team members, interrup-
tions, and so on. If the planning game is to result in realistic schedules,
stories should be estimated consistently in terms of their relative re-
quired effort. Developers should not try to adjust their estimates.

The coach asks the players to estimate by comparing with other sto-
ries. If a story looks twice as difficult as another story, estimate it at
twice the difficulty. The mix of stories proposed in the documentation
contains stories that are suited to demonstrating this. For example,
folding eight boats will probably take twice as long as folding four
boats. There are also several stories that have the same complexity. For
example, throwing a six five times is obviously exactly as difficult as
throwing a four five times.

But it’s not always that easy. Building a two-story house of cards is
more than twice as difficult as building a one-story house. And finding
two missing cards from a full deck is about as ditficult as finding one, if
you sort the cards.

Estimating how long it takes to perform these little tasks is difficult.
Developers already know estimating is difficult. For some customers, it
might come as a surprise to learn how hard it is.

One way to improve the estimates is to do short experiments, called
“spikes.” You could implement these simple stories completely as a

314 Extreme Programming Perspectives

%

+/@



%% é 111_SUCCI.ch27.fm Page 315 Thursday, June 27,2002 8:17 AM

spike. With real stories, this is not possible, so we give the players only a
limited time (for example, 15 minutes) to come up with their estimates.

Insanely Short Iterations

XP recommends short iterations, so the XP Game uses 7eally short iter-
ations: 180 seconds. These 180 seconds include only the “pure” imple-
mentation time, without counting any preparations or the time to
perform acceptance tests.

These 180 seconds are the “budget” the players can allocate when
making their release plan: The total estimated time of all the chosen
stories must not exceed 180 seconds.

If all the chosen stories have been implemented and there’s time left,
the customer may choose some more stories. The iteration ends after
exactly 180 seconds, not a second more, not a second less. If the team
is still working on a story, this story is abandoned. This emphasizes the
fixed iteration time, during which the customer can change only scope
and priority.

When the iteration is about halfway through, the team compares
their actual implementation to their plan: Are we ahead, behind, or
right on schedule? Should we warn the customer that they might have
to reduce scope?

We used to measure time with a stopwatch, but an hourglass is more
fun, more tactile, and more visible. We don’t care about one-second
precision; we need to know if we’re halfway or almost done. It turns
out that even with such simple tracking tools as a list of story cards and
an hourglass, we can give the customer pretty accurate and useful feed-
back on our progress. The sight of the last grains of sand sliding down
the hourglass reminds the players that time is finite and increases the
pressure to finish the implementation of their story.

Planning with Risk

Most of the stories depend only on skill and teamwork. We can expect
the team to perform consistently on these tasks.

But some stories depend on luck. How can you estimate how long the
dice stories (for example, “Throw three ones with two dice”) will take?
You can compute the odds; multiply by the time it takes, on average, to

Chapter 27 The XP Game Explained 315

- @



%% é 111_SUCCI.ch27.fm Page 316 Thursday, June 27,2002 8:17 AM

throw the dice. The answer might be “On average, it will take about 30
seconds to throw three ones with two dice.”

When you’re planning, you need to take this uncertainty and risk
into account. If the estimate is 30 seconds, it might as well take ten or
60 seconds, depending on your luck. When you have two stories that
will earn you about the same business value, but one is more risky than
the other, which one do you choose? Some people choose riskier stories
with a higher payoft; some people prefer the stories with a lower risk.
The important thing is to explicitly take the risk into account when
planning.

Customers learn that it’s not always possible to come up with defi-
nite estimates. Developers learn that it’s hard to plan when story esti-
mates include uncertainty.

Silly Little Games

The stories are silly little games: throwing dice, sorting cards, finding
missing cards, building a house of cards, folding a paper hat, inflating
balloons. You can invent your own additions, but all these stories have
some features in common.

4 They add to the relaxed, playful atmosphere.

4 They are not a bit technical, so everyone on the team can join in
and contribute.

¢ They are difficult enough to require some concentration and team
effort to complete quickly.

4 They are not too difficult, so the players can concentrate on the XP
concepts we want them to experience and learn.

The team decides before each game how they will perform the task
(in team or solo) and who will perform the task. Players sign up for
tasks; tasks are not assigned to them.

All the planned games are played one at a time, in the order chosen
by the customer. This reinforces the idea that the whole team is respon-
sible for all the stories.

It’s fun to see grown men and women working so hard to fold paper
hats or build houses of cards—or design and execute a six-way parallel
sort of a deck of cards!

316 Extreme Programming Perspectives

- @



%% é 111_SUCCI.ch27.fm Page 317 Thursday, June 27,2002 8:17 AM

Al

Playing to Win

The element of competition is important to the game. Everybody in
the team cooperates to implement as many stories as possible, as fast as
possible. They want their team to earn more points than the other
teams. Putting developers and businesspeople in one team makes them
work together, maybe for the first time.

Don’t create teams with only developers or only businesspeople. We
don’t want to see who’s “smartest”—we want to foster cooperation.

Acceptance Testing: Don’t Trust Developers

Most of the questions the players ask about the stories are related to the
acceptance criteria of the story. The coach (acting as the customer) tells
the players how he will test whether a story is implemented correctly.
For the balloons, there are pieces of string to measure whether the bal-
loon is big enough. For the paper-folding stories, there are prototypes
of the boat and hat to be folded.

Some stories look so easy that no explanation is necessary. But what
do we mean by a “sorted deck of cards?” Is the ace the first or the last
card? Do we need to put the different suits in some order? The team
has to agree with the customer/coach up front to estimate the diffi-
culty of the story.

When the team has implemented a story, the coach explicitly per-
forms the acceptance test: The sorted deck is verified; the folded hats
are compared with the prototype; the balloons are measured with the
piece of string. When the implementation doesn’t pass the test, the
team must continue the implementation. Even the simplest tasks can be
implemented incorrectly, so an acceptance test failure underscores the
importance of testing.

Tradinyg Places

During the game, the whole team switches between developer and cus-
tomer roles. The coach emphasizes this fact by displaying a banner,
which reads, “We are the customer” or “We are the developers.” If the
players must switch roles, even briefly (for example, when they ask for
more stories from the customers), the coach explicitly makes them
switch roles.

Chapter27 The XP Game Explained 317

%




%% é 111_SUCCI.ch27.fm Page 318 Thursday, June 27,2002 8:17 AM

This makes it clear that the customer and developer roles are dis-
tinct. Each shares some part of the responsibility to succeed. Both have
well-defined tasks. Developers should never make customer decisions;
customers should never make developer decisions.

Switching roles lets everybody experience all aspects of the coopera-
tive game of software development. Developers and customers experi-
ence what “the other side” does during a project. This increases the
respect each group has for the work of the others.

Velocity: How Much Did We Get Done?

This is the trickiest part of the simulation: explaining the concept of ve-
locity after the first iteration.

After each iteration, each team announces the number of business
points earned and the sum of the estimated durations of the imple-
mented stories. These numbers are easily found on the planning sheets.
Let’s call the sum of the estimated durations X. Note that we don’t
know the actual duration of each story, because we use an hourglass.

What we want to know is, how many stories can we implement in
one (180-second) iteration? Well, we just did such an iteration. How
many stories did we implement? We implemented some stories requir-
ing X amount of work. How much work will we be able to perform
next time? The Yesterday’s Weather rule says, probably about the same
amount as in the previous iteration. That’s if we don’t take sick leave,
holidays, interruptions, team learning, reuse, refactoring, and a thou-
sand other details into account.

Let’s give X a name: “Velocity.” Velocity measures how much work
the team can do per iteration. If we want to finish the next iteration on
time, each team will schedule its Velocity’s worth of stories.

If Velocity is effort per iteration, the story estimates don’t represent
time, but estimated effort. We no longer estimate in seconds, but in
“points” or whatever you like as a unit of programming effort. How
can we estimate using this made-up unit system? We estimate by com-
paring with other stories: If a new story is about as difficult as an imple-
mented story, give it the same number of points. If it looks twice as
difficult, give it twice the points. These points really express the relative
complexity of the stories. Maybe a good name would be “complexity
points.” The important thing is to estimate consistently.

318 Extreme Programming Perspectives

%

+/@



%% é 111_SUCCI.ch27.fm Page 319 Thursday, June 27,2002 8:17 AM

What about all these pesky factors that influence how much work
the team can do? We let the velocity take care of them. If the team
learns about the domain or reuses more code, they get more done.
Their measured velocity rises; they take on more work. If new mem-
bers join the team or people go on holiday, the measured velocity de-
creases, and the team takes on less work. It really is that simple! The
most difficult thing is zot to take all those factors into account when
estimating.

Does this really work? In the simulation, the teams typically underes-
timate the stories in the first iteration and end with a velocity lower
than 180, which indicates that few teams can estimate even these simple
stories accurately. In the second iteration, they get to ask for more sto-
ries (because they get better at doing the implementations) and in-
crease their velocity. By the third iteration, they get pretty close. In real
life, the authors have experienced that the velocity stabilizes after only a
few iterations. This has been observed in teams that worked for several
iterations on the same project and in teams working on different
projects in the same domain, using the same tools. Expect your velocity
to change dramatically if you change your team, problem domain,
tools, or environment.

Sustainable Playing

Each iteration has a fixed size of 180 seconds. Before implementing
each story, the players devise their strategy. The hourglass is started
when the implementation starts. When the team thinks it has com-
pleted the story, the hourglass is stopped. The hourglass only measures
real implementation time.

The implementation time is very stressful, because the players try to
complete a task in only a few tens of seconds. The players can relax a bit
between implementations and discuss their design and strategy. This
simulates the XP practice of sustainable pace or “no overtime”: Devel-
opers work with full concentration on some task, go home, relax, and
come back the next day, ready to perform another task.

Despite the concentration and stress of the story implementations,
the players don’t feel tired after three iterations. That’s because they
enjoy what they’re doing, and they get time to relax between tasks.

Chapter27 The XP Game Explained 319

- @



%% é 111_SUCCI.ch27.fm Page 320 Thursday, June 27,2002 8:17 AM

Al

Au:

Pls. add
[Beck2000]
after actual

citation
within chap-

ter text.

Conclusion

The XP Game is a fun and playful way of simulating the XP process. It
enables the participants to experience, in a relaxed environment, several
of the XP practices: user stories, estimation, the planning game, accep-
tance tests, short releases, sustainable pace, progress tracking, and ve-
locity. It is ideally suited as a follow-up to a tutorial on these practices.
The competition, team effort, and fun aspects make it a great team-
building tool: Playing the game improves trust and communication be-
tween developers and businesspeople.

The XP Game has been played in companies transitioning to XP,
during XP tutorials, and at software engineering conferences. The par-
ticipants always have fun and feel they have learned more about the XP
practices.

And Lesire Software Engineering? They’re still doing XP and deliv-
ering working software to their customers. Developers and business-
people are working together and enjoying it.

References

[Beck2000] K. Beck. Extreme Programming Explained. Addison-
Wesley, 1999.

Acknowledygments

We thank all those who played and coached the XP Game for helping
us improve the game and for the fun we had doing the game.

We thank Gerard Meszaros for making us think about what we were
trying to teach.

We would like to thank Lesire Software Engineering and the
XP2001 and XP Universe conferences for letting us play.

Abouft the Authors

Vera Peeters is an independent consultant with more than ten years of
experience in implementing object-oriented systems in a variety of do-
mains. For the last two years she has been working with XP, helping her
customers transition to XP, coaching XP teams, and giving lectures and

320 Extreme Programming Perspectives

%




%% é 111_SUCCI.ch27.fm Page 321 Thursday, June 27,2002 8:17 AM

Al

presentations about XP. Vera is involved in the organization of the
Dutch and Belgian XP user groups.

Pascal Van Cauwenberghe is the CTO of Lesire Software Engineer-
ing, where he leads the software development teams. He has been de-
signing and building object-oriented systems for more than ten years.

The XP Game is free and available from http://www.xp.be.

Chapter 27 The XP Game Explained 321

4~ 40



%I% é 111_SUCCI.ch27.fm Page 322 Thursday, June 27,2002 8:17 AM

+/@



